Journal of Organometallic Chemistry, 192 (1980) 33–39 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PHOSPHA-GUANIDINE

I. EINE NEUE VERBINDUNGSKLASSE MIT ZWEIFACH-KOORDINIERTEM DREIBINDIGEM PHOSPHOR

KURT ISSLEIB, HARRY SCHMIDT * und HINRICH MEYER

Sektion Chemie der Martin-Luther-Universität Halle-Wittenberg, Weinbergweg, 402 Halle/ Saale (D.D.R.)

(Eingegangen den 2. November 1979)

Summary

Bis-silylated phosphines react with carbodiimides giving phosphaguanidines through insertion into the P—Si-bond. Depending on the substituents R' and R" the N,P-bis-silylated derivatives (I) or the N,N'-bis-silylated isomers (II) are formed, the latter results from P,N-silyl migration and formation of a P=C double bond.

 $(R = Me, Cy, t-Bu, Ph, p-Me_2NC_6H_4; R' = Alkyl, R'' = Aryl e.g. Cy, Ph, p-ClC_6H_4)$

The structures of compounds I and II are discussed on the basis of their NMR spectra and the reaction with methanol leads to P—H-functional derivatives R(H)PC=NR"(R'). Treatment of RP(SiMe₃)₂ with PhN=C=O is also discussed. HNR"(R')

^{*} Vorgetragen auf der International Conference on Phosphorus Chemistry 1979, Halle/Saale (D.D.R.)

Zusammenfassung

Bis(trimethylsilyl) phosphine reagieren mit Carbodiimiden unter Einschub in eine P-Si-Bindung zu Phospha-guanidinen. In Abhängigkeit der Substituenten R' und R" bilden sich entweder die N,P-bis-silylierten Derivate (I) oder durch P,N-Silylwanderung unter Ausbildung einer P=C-Doppelbindung die N,N'-bissilylierten Isomeren (II).

$$RP(SiMe_{3})_{2} + R'N = C = NR'' - \begin{pmatrix} R''(R') \\ \downarrow N-SiMe_{3} \\ (R'') \\ \downarrow R \\ \downarrow R \\ (R'') \\ \downarrow R \\ \downarrow R \\ RP = C \begin{pmatrix} N-SiMe_{3} \\ \downarrow R \\ \downarrow R \\ \downarrow R \\ I \\ RP = C \begin{pmatrix} N-SiMe_{3} \\ N-SiMe_{3} \\ R'' \\ I \\ I \end{pmatrix}$$

 $(R = Me, Py, t-Bu, Ph, p-Me_2NC_6H_4; R' = Alkyl, R'' = Aryl z.B. Cy, Ph, p-ClC_6H_4)$

Die Strukturen von I und II werden anhand NMR-spektroskopischer Befunde diskutiert. I und II liefern mit Methanol die PH-funktionellen Derivate R(H)PC=NR''(R'). Ausserdem wird die Umsetzung von $RP(SiMe_3)_2$ mit

HNR"(R') PhN=C=O beschrieben.

In Fortsetzung der Untersuchungen zur Bildung der Phosphaamidine [1], wobei unter Umhybridisierung an Phosphor und Stickstoff im Sinne einer Silylgruppenwanderung gemäss Gl. 1 ein weiterer Verbindungstype mit sp^2 -hybridisiertem

(1)

$$\begin{array}{c} R'\\ R \xrightarrow{P} C = NR''\\ (Si) \\ (Si) \\ R \xrightarrow{P} R \xrightarrow{P} C \xrightarrow{R'} \\ N \xrightarrow{R''} \\ (Si) \\ N \xrightarrow{R''} \\ (Si) \end{array}$$

Phosphor resultiert, war zu beobachten, dass sich entsprechende Systeme durch Wechselwirkung mehrfach silylierter Phosphine mit arylsubstituierten Carbodiimiden bilden. Derartige Insertionsreaktionen * kumulierter Doppelbindungen in P—Si Bindungen verlaufen allgemein nach Gl. 2, wenn monosilylierte tert.-Phosphine eingesetzt werden [2].

* Die hypothetische Reaktion zwischen Nitrilen und Silylphosphinen z.B. gemäss

PhP(SiMe₃)₂ + RC \equiv N + PhPC $\begin{pmatrix} R & -- \\ N & \\ SiMe_3 & \\ SiMe_3 & \\ SiMe_3 & \end{pmatrix}$

liess sich nicht realisieren. Nach orientierenden Versuchen war unter verschiedenen Reaktionsbedingungen keine Addition des Silylphosphins an die die C≅N-Bindung zu beobachten.

$$X = C = Y + R_2 PSiMe_3 \rightarrow R_2 PCYSiMe_3$$
(2)

 $(X, Y z.B. = CH_2, O; O, O; S, S; RN, RN; ... R = Alkyl, Aryl)$

In gleicher Weise reagiert das Bis(trimethylsilyl)-phosphin mit Phenylisocyanat [3], wobei in Abhängigkeit der Reaktionsbedingungen unterschiedliche Mengen des Isomerengemisches von A entstehen Gl. 3.

Während sich die Umwandlung beider Isomeren von A (N(Si)/O(Si))¹H-NMR-spektroskopisch gut verfolgen lässt, konnte eine Folgereaktion von A im Sinne einer 1,3-*P*,*N*-Silylverschiebung zu B weder ¹H-[3] noch ³¹P-NMRspektroskopisch sicher nachgewiesen werden, wenngleich in A stets zu etwa 5% die Existenz einer nicht isolierbaren Verbindung mit einer für eine P=C-Bindung charakteristischen ³¹P-Tieffeldverschiebung (+57 ppm) zu beobachten war [4].

Analog PhN=C=O reagieren auch alkyl- bzw. alkyl-aryl-substituierte Carbodiimide mit PhP(SiMe₃)₂ zu den entsprechenden N,P-bis-silylierten Phospha-guanidinen:

 $\frac{Me_{3}Si}{Ph} \xrightarrow{PCN}_{R} \overset{SiMe_{3}}{R}$

Im Falle des N,N'-Bis-(trimethylsilyl)-carbodiimides unterbleibt eine derartige Additionsreaktion. Für dicyclohexyl- sowie cyclohexyl-phenyl-substituierte Carbodiimide werden die Umsetzungen näher verfolgt, wobei gemäss Gl. 4 die Phospha-guanidine Ia und Ib entstehen.

$$CyN=C=NR + PhP(SiMe_3)_2 \approx \frac{RN=C}{(Cy)} \xrightarrow{PSiMe_3}_{l} (4)$$

(Ia, R = Cy; Ib, R = Ph)

Dass es sich eindeutig in Ia und Ib um Phospha-guanidine mit tert.-Phosphinphosphor handelt, folgt aus den ³¹P-NMR-Daten mit für Ia –64 ppm und für Ib –66 ppm. In Nebenreaktionen wird Zweitsubstitution am Phosphor zu C beobachtet.

Die Methanolyse von Ia und Ib verläuft unter Spaltung der P-Si- sowie N-Si-Bindungen zu den entsprechenden sek. Phosphinderivaten (**D**).

Phospha-guanidine mit P=C-Bindung

Werden statt cyclohexyl- die diarylsubstituierten Carbodiimide mit Bis(trimethylsilyl)-organophosphinen umgesetzt, so ist auch hier generell im ersten Reaktionsschritt der Einschub des Heterokumulens in eine P—Si-Bindung zu diskutieren. In Analogie zu den Phospha-amidinen [1] sind ebenfalls die primär gebildeten P-silylierten Zwischenprodukte nicht fassbar und unterliegen der 1,3-P,N-Silylwanderung zu den N,N'-Bis-(trimethylsilyl)-phospha-guanidinen (II) mit sp^2 -hybridisiertem Phosphor. Der Reaktionsverlauf für das zunächst vorwiegend eingesetzte N,N'-Diphenylcarbodiimid mit verschieden substituierten Bis-silylphosphinen entspricht Gl. 5.

$$PhN=C=NPh + RP(SiMe_3)_2 \rightarrow \begin{pmatrix} NPh \\ \parallel \\ RP - C - NPh \\ \vdots \\ SiMe_3 & SiMe_3 \end{pmatrix} \Rightarrow RP=C \begin{pmatrix} Ph \\ l \\ NSiMe_3 \\ NSiMe_3 \\ Ph \\ (IIa - IIe) \end{pmatrix}$$
(5)

(IIa, R = Me; IIb, R = Cy; IIc, R = t-Bu; IId, R = Ph; IIe, R = p-Me₂NC₆H₄)

Die Substituenten R in $RP(SiMe_3)_2$ haben, wie NMR-spektroskopische Betrachtungen belegen, keinen Einfluss auf die *P*,*N*-Silylverschiebung. Über den Einsatz von HP(SiMe_3)₂ und P(SiMe_3)₃ mit RN=C=NR wird an anderer Stelle ausführlich berichtet.

Der allgemein gültige Reaktionsverlauf nach Gl. 5 für Diarylcarbodiimide wird z.B. durch Einsatz von p-ClC₆H₄N=C=NPh und p-MeOC₆H₄N=C=NPh belegt, wobei isomere Phospha-guanidine

Ph
Ph-P=C
$$< NSiMe_3$$

MSiMe₃ mit R = p-ClC₆H₄ und p-MeOC₆H₄ entstehen, die im ³¹P-NMR-
R

Spektrum die charakteristischen Tieffeldlagen von +123 bis +127 bzw. +120 bis +123 für Phosphor der K.Z. 2 aufweisen. Während Einzelheiten hierzu an anderer Stelle diskutiert werden sollen, seien hier die NMR-Daten von IIa—IIe näher betrachtet.

In den ³¹P-NMR-Spektren werden Resonanzen im für zweifach-koordinierte

TABELLE 1 NMR-DATEN VON IIa—IIe R P=C NSiMe ₃ (Z) Ph								
	Subst. R	¹ H-NMR (ppm/Hz) (Si—C— <u>H</u>)		R.	³¹ P-NMR (ppm) (P=C)			
		E	z	-				
IIa	Ме	0.43/2	0.12	1.5/1 (d)	+116			
ПЪ	Су	0.48/1.5	0.22	nicht ausgew.	+148			
IIc	t-Bu	0.51/2	0.2	1.45/11 (d)	+170			
IId	Ph	0.54/1.5	-0.08	nicht ausgew.	+121			
IIe	p-Me ₂ NC _o H ₄	0.57/2	0.06	2.5 (s)	+126			

Phosphine typischen Bereich registriert (vgl. Tab. 1). In Abhängigkeit der P-Substituenten liegen die Verschiebungen zwischen +116 ppm für IIa und +170 ppm für IIc, was eine deutliche Verschiebung nach tieferem Feld in Abhängigkeit zunehmender sterischer Beanspruchung anzeigt. Ebenfalls charakteristisch ist das für den Doppelbindungskohlenstoff registrierte Tieffelddublett z.B. in IId (13 C-NMR: +190 ppm/ ^{1}J (P-C) 47 Hz).

In den ¹H-NMR-Spektren werden im Silylprotonenbereich zwei Signale gleicher Intensität (vgl. Tab. 1) z.B. für IId bei -0.08 und +0.54 ppm registriert. Betrachtungen an Dreidingmodellen zeigen unter der Annahme eines Bindungswinkels am Phosphor von nahe 105° *, dass die dem *P*-Substituenten *Z*-ständige Gruppierung infolge sterischer Beeinflussung aus der RP=C-Ebene gedreht ist, was eine verminderte Wechselwirkung zwischen π -Elektronen der P=C-Bindung und Stickstoffelelektronenpaar bedingt. Bindungsverstärkung der N-Si-Bindung über eine d-p- π -Wechselwirkung ist aber möglich. Andererseits ist für die *E*-Gruppierung eine sterische Behinderung nicht abzuleiten. Die angegebenen Grenzstrukturen lassen, wie die Bindungsbeschreibung für IIa-IIe gemäss Gl. 6

veranschaulicht, die grosse Differenz der ¹H-Resonanzen beider Silylgruppen verstehen. Gestützt wird diese Interpretation auch durch die Aufspaltung des Tieffeldsignals von 1.5 Hz als Folge der Kopplung der Trimethylsilylprotonen der *E*-Gruppierung mit dem Phosphor, ein Ergebnis, das nur dann eine Wechselwirkung in dieser Grösse zulässt, wenn P-Elektronenpaar und koppelnde Gruppe auf der selben Seite der Doppelbindung stehen [7].

^{*} Ein R-P-C-Winkel in dieser Grössenordnung liegt nach Röntgenstrukturanalysen in offenkettigen zweifach-koordinierten dreibindigen Phosphinen vor [5,6].

Methanolyse von IIa--IIe

IIa—IIe sind in geringem Masse hydrolyseempfindlich. Die gezielte Methanolyse führt unter Freisetzung von MeOSiMe₃ zur Abspaltung beider Silylgruppen. Im Sinne einer Tautomerisierungsreaktion werden als Endprodukt die P—Hfunktionellen sek. Phospha-guanidine IIIa—IIIe gebildet Gl. 7.

$$RP = C(N < \frac{Ph}{SiMe_3})_2 + 2 MeOH \rightarrow PhN = C < \frac{Ph}{N-H}_{P-H} + 2 MeOSiMe_3$$
(7)

Die Strukturen von IIIa—IIIe sind durch Dubletts im Erwartungsbereich für sek.-Phosphine ³¹P-NMR-spektroskopisch charakterisiert (vgl. Tab. 2). Erwartungsgemäss führt die Methanolyse des Verbindungstyps I direkt zu III analogen Derivaten. Auf eingehende Untersuchungen in dieser Hinsicht wurde verzichtet.

TABELLE 2 ³¹ P-NMR-DAT	EN VON IIIa-	-IIIe N=0	Рћ С _ Р—Н R			
	IIIa	ШЪ	IIIc	IIId	IIIe	
R	Me	Су	tBu	Ph	p-Me ₂ NC ₁₁ H ₄	
(ppm)	-80	-43	29	61	62	
¹ J(PH)(Hz)	215	215	200	215	230	

Experimentelles

Sämtliche Reaktionen wurden unter Argon durchgeführt. Die ¹H- und ³¹P-NMR-Spektren wurden mit einem Varian HA100 D15 in Benzol, das ¹³C-Spektrum auf Bruker HX 90E in C_6D_6 aufgenommen. Positives Vorzeichen kennzeichnet die Verschiebung der Resonanzsignale zu tiefem Feld bezüglich TMS bzw. 85% H₃PO₄.

N,P-Bis-(trimethylsilyl)-N,N'-diorgano-P-phenyl-phospha-guanidine (Ia--Ib)

Zur spektroskopischen Charakterisierung von Ia und Ib werden äquimolare Mengen $PhP(SiMe_3)_2$ und Dicyclohexyl- bzw. Cyclohexyl-phenylcarbodiimid im NMR-Rohr vereinigt und vermessen. Bei Versuchen, Ia destillativ zu reinigen, lassen sich nur die Ausgangsstoffe zurückgewinnen.

N,N'-Bis-(trimethylsilyl)-N,N'-diphenyl-P-organo-phosphaguanidine (IIa-IIe)

0.1 mol des entsprechenden Silylphosphins, gelöst in 50 ml trockenem n-Hexan, lässt man unter Rühren bei Raumtemperatur zu 19.4 g (0.1 mol) Diphenylcarbodiimid in 50 ml n-Hexan tropfen. Dabei erwärmt sich die Reaktionslösung und verfärbt sich nach Gelb. Nach Abkühlen auf -30° C werden die abgeschiedenen Kristalle von IIa–IIe auf einer G2-Fritte gesammelt und im Ölpumpenvakuum getrocknet.

	RP=C(NPhSiMe ₃) ₂	Ausbeute (%)	Summenformel	P-Analysen (%)	
			(MolGew.)	gef.	ber.
IIa	$\mathbf{R} = \mathbf{M}\mathbf{e}$	95	C ₂₀ H ₃₁ N ₂ PSi ₂ 386.63	-	8.01
ΙЪ	$\mathbf{R} = \mathbf{C}\mathbf{y}$	71	C ₂₅ H ₃₉ N ₂ PSi ₂ 454.74	6.70	6.81
IIe	$\mathbf{R} = \mathbf{t}\mathbf{B}\mathbf{u}$	83	C ₂₃ H ₃₇ N ₂ PSi ₂ 428.71	7.33	7.23
lld	$\mathbf{R} = \mathbf{P}\mathbf{h}$	79	C ₂₅ H ₃₃ N ₂ PSi ₂ 448.69	6.83	6.90
Ie	$\mathbf{R} = p \cdot Me_2 NC_6 H_4$	86	C ₂₇ H ₃₈ N ₃ PSi ₂ 491.75	6.18	6.30

EINZELDATEN ZUR DARSTELLUNG N,N'-BIS-SILYLIERTER PHOSPHAGUANIDINE IIa-IIe

Bis-(trimethylsilyl)-p-dimethylaminophenylphosphin

In Analogie zur Synthese von PhP(SiMe₃)₂ [8] wird die Titelverbindung aus *p*-Me₂NC₆H₄PCl₂ und Lithium sowie Me₃SiCl in THF dargestellt. Ausb. 61%; Sdp. 123°C/0.03 mmHg. ³¹P NMR : δ --147 ppm; ¹H NMR : δ (SiMe₃) --0.06 ppm (d)/4.5 Hz, δ (NMe₂) +2.6 ppm (s).

N,N'-Diphenyl-P-organo-phospha-guanidine (IIIa--IIIe)

Die entsprechenden silylierten Phospha-guanidine werden mit einem Überschuss an Methanol 3 Std. am Rückfluss gekocht und anschliessend ³¹P-NMRspektroskopisch charakteristiert (vgl. Tab. 2).

Literatur

TABELLE 3

- 1 K. Issleib, H. Schmidt und H. Meyer, J. Organometal. Chem., 160 (9178) 47; daselbst weitere Lit. Zit. über Verbindungen mit sp²-hybridisiertem Phosphor.
- 2 E.W. Abel und I.H. Sabherwal, J. Chem. Soc. A, (1968) 1105.
- 3 K. Itoh, M. Fukui und Y. Ishii, J. Chem. Soc. C, (1969) 2002.
- 4 H. Schmidt, Dissertation, Univ. Halle/S., 1979.
- 5 R. Allmann, Angew. Chem., 77 (1965) 134.
- 6 G. Becker und H.-P. Beck, Z. Anorg. Allg. Chem., 430 (1977) 77.
- 7 Privatmitteilung G. Becker.
- 8 R. Appel und K. Geisler, J. Organometal. Chem., 112 (9176) 61.